NEXTENERGY

2004 DOE Hydrogen, Fuel Cells & Infrastructure Technologies Program Review

May 24 - 27, 2004

NextEnergy Microgrid and Hydrogen Fueling Facility

Dr. C.G. Michael Quah (CTO / VP)

NextEnergy

Objectives - 0

- To support the DOE "Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation Project" in the Detroit area
- To collect and analyze data with existing codes and standards and establish a "Best Practices" training and educational program

Objectives - I

- To integrate, within a core urban environment, critical hydrogen infrastructure components and systems for multi-use operations
- To optimize SYSTEM solutions/integration to advance the hydrogen infrastructure for vehicular and stationary use

Objectives - II

- To provide hydrogen to vehicles at 3,600 psig and 5,000 psig (for demos in the Detroit area)
- To study the system interactions/integration for power generation (~ 1 MW) in a Microgrid with fuel cells, ICE generators, Stirling engines, and solar PV

Blueprint: Plan Layout for Power Generation Systems (Hydrogen and Natural Gas) in the Microgrid

(Note: in the actual poster session, the blueprints will be larger in size)

Blueprint: Vertical View of the Microgrid Power Sources (Hydrogen and Natural Gas)

(Note: in the actual poster session, the blueprints will be larger in size)

MEXIENERGY Microgrid Components

4-Plug Power Fuel Cells (H2)	20 kW		
2-STM Stirling (H2 & NG)	104 kW		
1-Menag EGR IC engine	210 kW		
1-DTE Turbine	355 kW		
2-DTE IC Engine (iPower)	225 kW		
1-Ford/Stuart H2 IC engine	120 kW		
PV Array (Unisolar)	30 kW		
Total	1064 kW		
Thermal recovery systems (Heating/Chilling)			
Underground electrical			
Underground thermal			
Flex. foundation/interconnects			

Budget

 Total NextEnergy Center Project (powered by Hydrogen, Natural Gas, Other Fuels): \$ 22.0 million

THIS PROGRAM ONLY:

 NextEnergy Microgrid and Hydrogen Fueling Facility: \$ 4.54 million

NextEnergy share: \$ 2.54 million

DOE share: \$ 2.00 million

NEXTÉNERGY

SITE DRAWING

NEXT<mark>ÉNERGY</mark>

Technical Barriers & Targets - I

- Construction Design:
 - Safety: NO above ground hydrogen / gas piping (requiring innovative construction of "feed" basement
 - -- Class 1, Div 2, Group B classification)
 - Safety: Underground protection for hydrogen conduits (Note: NO existing codes for buried hydrogen lines!)
 - Modular "plug and play" easy interchange of power generators (requiring flexible foundation "feed" interconnections from below)

VEXTÉNERGY Technical Barriers & Targets - II

- Operations and Control:
 - Study system stability and system economics from diversity of power sources and fuel feeds
 - Provide for automatic and remote shut-offs and shutdowns (pressure sensors and in-duct hydrogen and gas sensors, and flame detectors)
- Power Pavilion:
 - Ensure all power sources are weather-proofed with in-enclosure sensors

NEXTÉNERGY

POWER PAVILION

Approach: Leverage the Microgrid Infrastructure to Evaluate System Integration Challenges - I

- Determine the overall economics of hydrogen use for power generation in different power technologies; compare the economics for hydrogen as fuel in vehicular applications
- Compare the hydrogen data with data with other fuel feeds: natural gas, bio-fuels, etc. (within the context of power generation in a microgrid)

Approach: Leverage the Microgrid Infrastructure to Evaluate System Integration Challenges - II

- Exploit microgrid data to develop high security/reliability power system applications
 - Applications development (e.g. Military, Homeland Sec.)
 - Equipment testing and verification (DG/CHP, ridethrough, control/interface gear)
- Utilize hydrogen fueling system for the development of small scale on-site H2 production technologies
- Leverage laboratory to facilitate system integration/ packaging

Hydrogen Supply System

Project Safety - I

- Design & Construction:
 - Innovations in below-ground hydrogen lines (follow natural gas line protocols; develop flexible foundation "feed" interconnects)
 - Classification of "feed" basement as Class 1, Div. 2, Group B (except for nonclassified areas for inverters and other electrical switchgear and Class 1, Div. 1 for the sump pump pit)

Project Safety - II

- Operations & Controls:
 - Low pressure sensors for automatic shut-downs and in-duct hydrogen and gas sensors and flame detectors
 - Provision for remote and automatic shutdowns
 - Extensive grounding provisions
- Co-ordination with Praxair and with Michigan Dept. of Environmental Quality for liquid hydrogen storage and refueling

Project Timeline

	System Design	Start Final Design	Equipment Ordered	Equipment Delivered	Env Permit Obtained	Begin Construction	System Commission- ing
NextEnergy Center	~	✓	05/04	on-going	N/A	04/04	04/05
Microgrid	~	✓	✓	08/04	02/04	05/04	04/05
Hydrogen Systems	>	05/04	06/04	08/04	04/04	07/04	04/05

Technical Progress

- System Designs for NextEnergy Center --all completed
- Various Power Sources for Microgrid --specified and ordered
- Final Designs for Center and Microgrid -accepted (Hydrogen system design to be accepted in May)
- Environmental permits obtained

Interactions & Collaborations

- DTE Technology: Microgrid Design
- Plug Power: 5 kW PEM Fuel Cells (stacks only)
- STM: 55 kW Stirlings (H₂ and natural gas fed)
- iPower: 85 kW units (based on GM engine)
- Stuart Energy: 120 kW Ford H₂ ICE
- Praxair: Liquid Hydrogen and Fueling Station
- Univ of Michigan: Analysis / computations of emissions and efficiencies based on the microgrid components for power generation

Power Generators in the NextEnergy Microgrid

Plug Power 5 kWPEMFC (stack portion only; no reformers; no inverter section)

400 kW WaltherTurbine

NEXTÉNERGY

Power Generators in the NextEnergy Microgrid

STM Stirlings in outdoor enclosure

85 kW iPower ICE

Future Work - I

- Develop the Codes and Standards "Best Practices" database and conduct the annual workshop in cooperation with DOE
- Complete and Issue the Teaching Modules and Educational Resources for the "Hydrogen Education Teaching Module"

Future Work - II

- Incorporate reformers into hydrogen supply (steam-methane reforming, CPOx – based reformer):
 - Post-treatment processes for purity requirements
- Explore bio-fuel feeds into Stirling engines (new hot-end designs needed)
- Develop innovations in energy storage, load-management to improve microgrid stability and reliability